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In this paper, we rely on a nonlinear Peyrard-Bishop-Dauxois �PBD� model. This mechanical model explains
DNA dynamics assuming only transversal oscillations of nucleotides. The potential energy for the hydrogen
bonds, connecting AT or CG base pairs, is modeled by a Morse potential. This potential is characterized by the
depth D and the inverse width a of the Morse potential well. We discuss one type of single molecule manipu-
lation experiments, which we call unzippering experiments. It is explained that the highest values of two
essential parameters of the PBD model, the parameters D and a, can be determined according to the results of
those experiments. This statement is supported by theoretical calculations. We show that the inverse width of
the Morse potential well a has been overestimated so far. The smallest value for this parameter is determined
according to the PBD model, which means that a rather narrow interval can be assumed. Also, we give an idea
how to determine the optimal value of the parameter a.
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I. INTRODUCTION

It is well known that the B-form DNA is a right-handed
double helix, which consists of two complementary strands.
The helix has a diameter of about 24 Å and a helical pitch of
10.4 base pair �bp� per turn, while the vertical spacing of the
basis is about 3.4 Å �1�.

There have been a lot of attempts to describe DNA dy-
namics with appropriate models. A hierarchy of the most
important models for the nonlinear DNA dynamics was pre-
sented by Yakushevich �2�. Most of them are mechanical
models, like the one that we use in this paper.

The Peyrard-Bishop �PB� model was proposed in Ref. �3�.
This model does not take helicoidal structure into consider-
ation, while its improved version, which we call the Peyrard-
Bishop-Dauxois �PBD� model, does �4,5�.

In the past few years, a couple of single-molecule micro-
manipulation techniques have been used to study the struc-
ture of individual biopolymers such as DNA, RNA, and pro-
teins. The aim of this paper is to find a relationship between
the PBD model and the micromanipulation experiments. As
will be seen later, those experiments could be used to deter-
mine the values, or at least the possible intervals, of some
parameters used in the theoretical model.

In what follows, we outline the main features of the PBD
model �Sec. II�. We do not go through rather tedious math-
ematical derivations as this can be found in cited references.

Then, in Sec. III, we explain and discuss a couple of
single-DNA micromanipulation experiments where the force
between the DNA strands was measured. We call them un-
zippering experiments. According to those results, one can
estimate the possible values of the two basic parameters of
the PBD model. In fact, we estimate their highest values
according to the experimental results. This is further cor-
roborated by some theoretical estimations �Sec. IV�. Also,
we determine the smallest possible values of those param-

eters according to the theory. Finally, we suggest a proce-
dure, based on the PBD model, which might bring about the
optimal value of the parameters. This might be the most
intriguing part of the paper.

It is important to keep in mind that the two kinds of esti-
mates are on different footings. In Sec. III, we carried out the
estimations according to the unzippering experiments only
and no theoretical model was assumed.

In Sec. IV, however, estimations were carried out accord-
ing to the PBD model, explained in Sec. II. The fact that the
estimated values obtained according to those different meth-
ods are very close certainly yields to a conclusion that the
PBD model is the appropriate one.

We close this paper with the summary and concluding
remarks.

II. PEYRARD-BISHOP-DAUXOIS MODEL

According to both, the PB and the PBD models, one can
assume a common mass m for all the nucleotides as well as
the same coupling constant k along each strand. This simpli-
fication means that the DNA chain is treated as a perfectly
homogeneous periodic structure.

The helicoidal structure of the DNA chain can be taken
into consideration assuming that neighboring nucleotides
from different strands are close enough and may interact.
The nucleotide at the site n of one strand interacts with both
the �n+h�th and �n−h�th nucleotides of the other strand
�4,5�. As if the helix has a helical pitch of about 10 bps per
turn, as was stated above, we assume h=5.

According to the PBD model, only transversal motions
are taken into consideration and displacements of the nucle-
otides at the site n from their equilibrium positions are un and
vn for the two strands. The strands are coupled to each other
through hydrogen bonds, which are supposed to be respon-
sible for the transverse displacements of the nucleotides. The
potential energy for the hydrogen bonds connecting AT or
CG base pairs is modeled by a Morse potential*Electronic address: szdravk@kondor.etf.bg.ac.yu
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VM�x� = D�e−ax − 1�2, �1�
where D and a are the depth and the inverse width of the
Morse potential well, respectively. To be more precise, the
width of the potential is 1 /a at VM �D /5. This is shown in
Fig. 1.

In fact, the Morse potential represents not only the hydro-
gen bonds, but the repulsive interactions of the phosphate,
and the surrounding solvent action �4,5�.

The Hamiltonian for the DNA chain is �4,5�

H = ��m

2
�u̇n

2 + v̇n
2� +

k

2
��un − un−1�2 + �vn − vn−1�2�+

K

2
��un

− vn+h�2 + �un − vn−h�2� + D�e−a�un−vn� − 1�2� , �2�

where k �K� is the harmonic constant of the longitudinal
�helicoidal� spring.

It is more convenient to describe the motion of two
strands by making a transformation to the center-of-mass co-
ordinates representing the in-phase and out-of-phase trans-
versal motions, namely,

xn = �un + vn�/	2, yn = �un − vn�/	2. �3�

The dynamical equations, derived from the Hamiltonian �2�,
are

mẍn = k�xn+1 + xn−1 − 2xn� + K�xn+h + xn−h − 2xn� , �4�

mÿn = k�yn+1 + yn−1 − 2yn� − K�yn+h + yn−h + 2yn�

+ 2	2aD�e−a	2yn − 1�e−a	2yn. �5�

The first of those decoupled equations describes usual lin-
ear waves �phonons� while the second one describes nonlin-

ear waves �breathers�. Hence, we restrict our attention on the
second nonlinear equation.

To solve Eq. �5�, a long and tedious procedure should be
performed �4–7�. All the tedious derivations and important
explanations can be found in Ref. �8�.

First, we assume small oscillations as

y = �� �� � 1� , �6�

which means that the nucleotides oscillate around the bottom
of the Morse potential well, given in Eq. �1�. However, those
oscillations are still large enough to be enharmonic. Then, we
use the semi-discrete approximation �8� and expect the solu-
tion to be a modulated solitonic wave �4–8�

�n�t� = F1��nl,�t�ei�n + ��F0��nl,�t� + F2��nl,�t�ei2�n�
+ cc + O��2� , �7�

�n = nql − �t , �8�

where l is the distance between neighboring nucleotides of
the same strand, �
�0 is the optical frequency of the linear
approximation, and q=2� /� is the wave number of a carrier
wave. For the most favorable mode, that is the most probable
mode, we suggested �7–9� the one for which ql=� /h.
The functions F0 and F2 can be expressed through the func-
tion F1 �4–8�, which is a solution of the nonlinear
Schrödinger equation

iF1	 + PF1SS + Q�F1�2F1 = 0, �9�

where 	 and S are time and space coordinates �4–8�, while
the dispersion coefficient P and the coefficient of nonlinear-
ity Q are given by

FIG. 1. Morse potential.
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P =
1

2�
� l2

m
�k cos�ql� − Kh2 cos�qhl�� − Vg

2� �10�

and

Q = −
�g

2

2�
�2
�� + �� + 3� . �11�

The optical frequency can be obtained from a dispersion re-
lation �4–8�

�2 = �g
2 +

2k

m
�1 − cos�ql�� +

2K

m
�1 + cos�qhl�� �12�

while Vg is a group velocity defined as

Vg 

d�

dq
=

l

m�
�k sin�ql� − Kh sin�qhl�� . �13�

The remaining parameters are �4–8�

�g
2 =

4a2D

m
, �14�


 =
− 3a
	2

, �15�

 =
7a2

3
, �16�

� = − 2
�1 +
4K

m�g
2−1

, �17�

and

� = �g
2
�4�2 −

2k

m
�1 − cos�2ql��

−
2K

m
�1 + cos�2hql�� − �g

2−1

. �18�

For PQ�0, Eq. �9� has an envelope soliton solution
�4,5,10�. Also, as was stated previously, functions F0 and F2
can be expressed through the function F1. Therefore, we can
finally obtain the expression for the functions y�t� and �n�t�,
defined by Eqs. �6�–�8� as �4–8�

�n�t� = 2A sech���nl − Vet�
Le

��cos��nl − �t�

+ �A sech���nl − Vet�
Le

�
���

2
+ � cos�2��nl − �t��� + O��2� , �19�

where

� = q +
�ue

2P
, �20�

Ve = Vg + �ue, �21�

� = � +
�Vg + �uc��ue

2P
, �22�

A =	ue
2 − 2ueuc

2PQ
, �23�

Le =
2P

	ue
2 − 2ueuc

, �24�

and ue and uc are the velocities of the envelope and the
carrier waves, respectively.

We showed �11� that this solution exists only if K�a2D.
Otherwise, the parameter Q would be negative and the am-
plitude A would be imaginary.

The above model is illustrated by Figs. 2 and 3 for
n=300. One can see that the function ��t� is a modulated
solitonic wave called breather.

We chose the following set of values for parameters char-
acterizing a traveling wave solution �4,5�

ue = 105 m/s, uc = 0, � = 0.007. �25�

Figures 2 and 3 were carried out for k=24 N/m �4,5�,
K=4 N/m and for k=1 N/m �12–14�, K=0.5 N/m, respec-
tively. We discuss those values in the next section. For both
figures, we picked up a=2 Å−1 and D=0.1 eV �4,5� as well
known values l=3.4�10−10 m and m=5.1�10−25 kg. One
can find different values for parameters a and D, but we will
return to this issue later.

We defined �11� a density of internal oscillations �density
of carrier wave oscillations� as

D0 

�

�c
, �26�

where � and �c are the length of the envelope and the wave-
length of the carrier wave, respectively. To be more precise,
this is a number of the carrier wavelengths per an envelope,
but we use the word density for short. From hyperbolic and
cosine terms in expression �19�, one can see that

� =
2�Le

�
�27�

and

�c =
2�

�
=

2�

q +
�ue

2P

. �28�

From Eqs. �24�–�28�, we can easily obtain

D0 = 1 +
2qlP

�uel
. �29�

The function D0 describes the solitonic solution ��nl�,
which is Eq. �19� for a particular value of t, rather then ��t�,
given by Figs. 2 and 3 for n=300. Therefore, we should also
define the density of internal oscillations �density of carrier
wave oscillations� �0 as a ratio of two periods. According to
Eq. �19�, this function is

SINGLE-MOLECULE UNZIPPERING EXPERIMENTS ON¼ PHYSICAL REVIEW E 73, 021905 �2006�

021905-3



�0 =
�

�Ve/Le
. �30�

From Eqs. �21�, �22�, �24�, �25�, and �30� and for Vg��ue,
which might not be always correct, one easily obtains

�0 = 1 +
2�P

�ueVg
. �31�

For Figs. 2 and 3, we can calculate, according to Eq. �30�,
�0=20.6 and �0=5.8, respectively.

III. EXPERIMENTS AND DISCUSSIONS

A first single DNA molecule experiment was carried out
in 1992 �15�. That was a direct mechanical micromanipula-
tion of the single DNA. From then, a few techniques have
been used to determine elastic properties of the molecules
and to induce structural transitions. Most of those microma-
nipulation experiments are stretching experiments �16–22�.
Usually, the force-displacement response of the single DNA
molecule was measured. Those experiments were followed
by theoretical research �23–28� and computer simulations
�29�. This research has also been reviewed �1,14�.

However, in this work, we are interested in the two pa-
rameters characterizing the Morse potential, as was stated

FIG. 2. Elongation of the out-of-phase motion
as a function of time �k=24 N/m, K=4 N/m,
D=0.1 eV, a=2 Å−1�.

FIG. 3. Elongation of the out-
of-phase motion as a function of
time �k=1 N/m, K=0.5 N/m, D
=0.1 eV, a=2 Å−1�.
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previously. As if this potential is responsible for the trans-
verse force between the two strands, we discuss results of a
couple of experiments where the interaction between the two
DNA strands was measured. We call them unzippering ex-
periments. The results of those experiments will be used to
test the PBD model. In fact, we show that one can determine
the highest value of the product aD, where a and D are the
parameters explained previously. We will see that the value
of the parameter a has been overestimated in probably all the
papers dealing with it.

In some of those unzippering experiments �30–32�, me-
chanical strand separation was carried out. The 3� and 5�
extremities on one end of the molecule are pulled progres-
sively apart, and this leads to the opening of the double helix.
In Ref. �30�, the opening forces in the range of 10–15 pN
were reported. It was roughly estimated that the value of the
force would be about 10 pN for opening a 100% AT se-
quence and about 15 pN for a 100% GC sequence.

It was determined �31� that the DNA molecule starts to
open when the force approaches 12 pN, while, during the
unzippering of the two strands, the force signal shows varia-
tions between 11–14 pN.

In Ref. �32�, the progressive opening was carried out for
different opening velocities. It is reported that the average
value and amplitude of the force signal are almost indepen-
dent of the opening velocity in the interval 20 nm/s to
800 nm/s. Also, a rapid variation of the amplitude of about
2 pN was reported. This could be explained by the fact that
the opening force might be fragment dependent.

For some papers, the name “unzippering experiments” is
not convenient as if the interchain interaction was carried out
in a different way. Namely, the complementary segments
were covalently attached to opposing surfaces �33�. For ex-
ample, force versus relative surface displacement was mea-
sured between �ACTG�5− and �CAGT�5− functionalized sur-
faces. The highest forces for 20, 16, and 12 bps were 1520,
1110, and 830 pN, respectively. This means that the highest
force was 76 pN/bp.

In a similar experiment �34�, the DNA oligomer a=5�-G
-G-C-T-C-C-C-T-T-C-T-A-C-C-A-C-T-G-A-C-A-T-C-G-C
-A-A-C-G-G-3� was tested against its compliment b=3�-C
-C-G-A-G-G-G-A-A-G-A-T-G-G-T-G-A-C-T-G-T-A-G-C
-G-T-T-G-C-C-5� and the truncated complements c=3�-A
-T-G-G-T-G-A-C-T-G-T-A-G-C-G-T-T-G-C-C-5� and d

=3�-T-A-G-C-G-T-T-G-C-C-5�. Therefore, the lengths of
sequences c and d are 20 and 10 bps, while complementary
oligomers a and b are 30 bps long. The unbinding forces
were in the interval 20 pN to 50 pN. A close result, 54 pN,
was also reported �35�.

In a theoretical paper �36�, the highest force was calcu-
lated to be about 275 pN. However, about 4 bps were in-
volved in the interaction, which means that the interaction
force is about 69 pN/bp.

As a conclusion, we can state that the highest reported
value of the unbinding force is approximately

Fem � 75 pN. �32�

A. Estimations according to the experimental values

As was stated above, the aim of this section is to estimate
the highest value of the parameter aD. It was explained that
the DNA strands were coupled to each other through hydro-
gen bonds. The potential energy of this interaction, connect-
ing base pairs of the different strands, is modeled by the
Morse potential, given by Eq. �1� and the last term in Eq. �2�.
Note that the stretching of the nucleotides, belonging to the
same pair, is

u − v = y	2 = z �33�

as can be seen from Eqs. �1�–�3�.
A force coming from the Morse potential can be easily

calculated according to Eq. �1� as a first derivative of the
function VM. The highest value of this Morse force is

FMm =
aD

2
. �34�

As was stated above, different experimental values for un-
binding forces have been reported so far �30–36�. Those
forces are from about 10 pN/bp to approximately 75 pN/bp.
This brings about a conclusion that the calculated force �34�
should be less than the maximal reported experimental force
Fem, that is

aD

2
� Fem. �35�

However, Eq. �35� requires further discussions. One can
ask if Eq. �35� would be correct if the experimental value
Fem were correct. In other words, we need to study the pos-
sibility that the experiments, explained in Ref. �33�, are per-
fect and that we can assume that the value of Fem
=75 pN/bp is exactly the highest value of the unbinding
force. Suppose for a moment that the Morse force represents
all the possible interactions between the nucleotides. If so,
will the left and the right side of Eq. �35� be equal? The
answer depends on the type of the experiments. To see this,
we need to apply the following well known formulas to the
DNA molecule

dU = TdS + dA , �36a�

TABLE I. Pairs of the Morse potential parameters: a �inverse
width� and D �depth of the Morse potential well�.

a �Å−1� D �eV� Reference aD �pN�

1.4 0.19 �37� 425.6

1.8 0.33 �3� 950.4

2 0.1 �4,5� 320

4.45 0.04 �38� 284.8

4.5 0.03 �14� 216

6.3 0.15 �36� 1512

AT 4.2 0.05 �39� 336

GC 6.9 0.075 �39� 828
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dF = − SdT + dA , �36b�

where U and F are internal energy and Helmholtz free en-
ergy, respectively, and dA is work done on the system. For
the experiments explained in Ref. �33�, one can safely as-
sume both S=const and T=const. If we assume that the po-
tential energy part of U is VM and that the experimental force
is the first derivative of the free energy, then both sides in Eq.
�35� are equal.

The only problem might be if the Morse potential does
not represent all the possible interactions. It was stated pre-
viously that the Morse potential represents not only the hy-
drogen bonds, but the repulsive interactions of the phos-
phate, and the surrounding solvent action �4,5�. If so, we can
state that aD /2 is, if not less then, than certainly approxi-
mately equal to Fem, corroborating Eq. �35�.

In papers, one can find various choices for the parameters
a and D. Some of those values are given in Table I. In the
last two rows, the values for AT and GC pairs are given.

Obviously, all the choices for a and D are unacceptable as
they do not satisfy Eqs. �32� and �35�. In other words, both
parameters have been overestimated. The only exception
may be small values for D. Namely, a small value for D, like
D=0.05 eV, together with very small a, may satisfy Eqs.
�32� and �35�. For example, for a=1 Å−1 and D=0.05 eV,
one can calculate aD=80 pN�150 pN. Therefore, we state
that the value of the parameter a has certainly been overes-
timated. As if 1 /a is the width of the Morse potential, we can
conclude that DNA is “softer” then it has been assumed so
far.

Finally, we want to point out that Eq. �35� is not related to
any solution of Eq. �5�. In other words, no physical model,
describing DNA dynamics, was assumed. To be more pre-
cise, only what is common for Eq. �35� and the PBD model
is the Morse potential, given by Eq. �1�. However, theoretical
estimations will be relied on the PBD model, which is a topic
of the next section. Those estimations will be compared with
the experimental values, e.g., with Eqs. �32� and �35�.

TABLE II. The smallest values of the parameter a calculated from the requirement Q�a��0 and the
double values of the maximum of the Morse force FMm=aD /2.

Triplet k �N/m� K �N/m� D �eV� 
min �Å−1� 
minD �pN�

1 0.5 0.15 0.558 133.9

1 1 0.5 0.10 0.683 109.3

1 0.5 0.05 0.966 77.3

1 0.3 0.15 0.430 103.2

2 1 0.3 0.10 0.527 84.3

1 0.3 0.05 0.745 59.6

3 1 0.15 0.786 188.6

3 3 1 0.10 0.963 154.1

3 1 0.05 1.362 108.9

3 0.5 0.15 0.550 132.0

4 3 0.5 0.10 0.673 107.7

3 0.5 0.05 0.952 76.2

6 2 0.15 1.112 266.9

5 6 2 0.10 1.362 217.9

6 2 0.05 1.926 154.1

6 0.5 0.15 0.538 129.1

6 6 0.5 0.10 0.659 105.4

6 0.5 0.05 0.932 74.6

24 4.3 0.15 1.615 387.6

7 24 4.3 0.10 1.978 316.5

24 4.3 0.05 2.800 223.8

24 3 0.15 1.337 320.9

8 24 3 0.10 1.638 262.1

24 3 0.05 2.316 185.3

24 1 0.15 0.730 175.2

9 24 1 0.10 0.894 143.0

24 1 0.05 1.264 101.1

24 0.5 0.15 0.480 115.1

10 24 0.5 0.10 0.587 94.0

24 0.5 0.05 0.831 66.4
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IV. ESTIMATIONS ACCORDING TO THE PBD MODEL

In what follows, we estimate the values of the parameters
a and D according to the PBD model of the DNA molecule.
We show that those estimations are in good agreement with
the expressions �32� and �35�.

A. Estimation 1

Let us study a function

f�z� = �e−az − 1�e−az. �37�

This is the last term in Eq. �5� where y	2 was replaced by z
according to Eq. �33�. Therefore, z is the stretching of the

nucleotide pair. To derive Eq. �9�, we performed a series
expansion of the exponential terms. Of course, this is correct
only for very small values for az. In other words, instead of
the function �37�, a new approximated one

F�z� = �1 − az +
a2z2

2
−

a3z3

6
− 1��1 − az +

a2z2

2
�

� − az +
3

2
a2z2 −

7

6
a3z3 �38�

was used. It is easy to see that there should be

FIG. 4. Elongation of the out-of-phase motion
as a function of time �k=1 N/m, K=0.5 N/m,
D=0.1 eV, a=0.9 Å−1�.

FIG. 5. Elongation of the out-
of-phase motion as a function of
time �k=3 N/m, K=0.5 N/m, D
=0.1 eV, a=0.9 Å−1�.
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ay � 0.3 �39�

for the error not to exceed about 10%. Hence, large a is not
compatible with the used theory. For example, for a
=1.5 Å−1 the stretching z=y	2 should be less then 0.3 Å.
This means that the amplitudes of the oscillating nucleotides,
which is half of the stretching, would be smaller then 0.15 Å,
which is extremely small. Note that the distance between the
nucleotides of the same pair is about 3 Å. Hence, if we as-
sume that the amplitude of the oscillating nucleotide should
be higher then 0.2 Å, then there should be a�1 Å−1.

Now, we can estimate the upper limit of the parameter D.
According to Eqs. �32� and �35�, one obtains

D � 0.09 eV for a � 1 Å−1,

D � 0.12 eV for a � 0.8 Å−1,

D � 0.16 eV for a � 0.6 Å−1.

B. Estimation 2

The highest values for the parameters a and D have been
discussed so far. The aim of this section is to discuss the
smallest value for a.

As was stated above, the solitonic solution �19� exists if
PQ�0. One can easily check that the dispersion coefficient
P is always positive. Hence, we want to determine how the
nonlinear parameter Q depends on a. However, Q also de-
pends on a few more parameters. This is why the smallest
value for the parameter a, for which Q=0, is showed in a
Table II for a couple of values of the parameters k, K, and D.
In other words, the parameter Q is an increasing function of
a and Table II was carried out according to the figures Q�a�
and the requirements Q�a��0.

We should keep in mind that Q=0 implies A→� accord-
ing to Eq. �23�. This means that a cannot be infinitely close
to amin.

The optical frequency is given by Eq. �12�. If we had
studied phonons, we would have obtained the acoustical fre-
quency. It was showen �40� that the optical frequency is
higher than the acoustical one if

K � a2D . �40�

Equality in Eq. �40� would imply the resonance mode
�40,41�. One can easily check that Eq. �40� holds for all the
triplets in Table II.

Table II shows that amin depends much more on K than on
the parameter k. We can conclude that large values for K is
not a good choice. Namely, no triplet for K�1 N/m is con-
venient as if either a or aD is too large. Also, D=0.05 eV is
probably too small. On the other hand, we cannot exclude
any value of the parameter k.

In Figs. 4–6, we show the breather �n�t� for the inverse
width of the Morse potential a belonging to the above sug-
gested interval. All of them were carried out for a=0.9 Å−1,
D=0.1 eV, and K=0.5 N/m. For the parameter k, we picked
up 1 N/m, 3 N/m, and 15 N/m. We do not have to worry
about very large amplitudes because, as was explained
above, the amplitude depends on unknown parameters �, ue,
and uc.

Let us compare Figs. 4–6 with Figs. 2 and 3, carried out
for a=2 Å−1. Obviously, the first of them, that is Fig. 2,
differs from others in having much higher density of internal
oscillations �D0=20.6�, while D0 for Figs. 3–6 is 5.8, 5.4,
4.8, and 3.5, respectively. From the point of view of engi-
neering modulation, the first choice, Fig. 2, would be the
best. However, such a conclusion may be wrong here. We
should keep in mind that relatively big particles, nucleotides,
oscillate in DNA, not electromagnetic field vector. It will be

FIG. 6. Elongation of the out-
of-phase motion as a function of
time �k=15 N/m, K=0.5 N/m,
D=0.1 eV, a=0.9 Å−1�.
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suggested, in the next section, that we should be inclined
towards the optimal D0, rather than the highest one.

C. Estimation 3

In the previous sections, we studied the possible interval
for the parameter a. The upper limit was estimated according
to both the experimental data and the PBD model, while the
lower limit was discussed according to the theory �Sec.
IV B�. In this section, we try to study physical conditions
that might bring about the optimal value for a. Unfortunately,
we will not be able to determine the exact value of the pa-
rameter a because the arbitrary parameters �, ue, and uc are
involved in the issue.

The solitonic wave �n�t� is a modulated signal and we
defined the densities of the internal oscillations D0 and �0 by

Eqs. �29� and �30�. We suggest that the optimal value a0 is
the one which allows those two functions to be equal, that is

D0�a0� = �0�a0� . �41�

One can see, from Eqs. �19�, �26�–�28�, and �30�, that the
requirement �41� represents the mode when phase velocities
of both the envelope and the carrier signal are equal, i.e.

�

�
= Ve. �42�

This is sort of a coherent mode, meaning that the wave is
unchanged in time. In other words, the pattern shown in any
of the Figs. 2–6 is the same at any position n of the DNA
molecule.

In Table III, we show the values of a0 for the four triplets
existing in Table II. Those triplets correspond to the smallest
values of K. One can see that a0 is higher then amin for the
triplets 2 and 10, for triplet 6 they are almost equal, while for
triplet 4, a0 is smaller then amin. However, we should not
worry about this inconvenience because a0 depends on still
arbitrary parameters �ue and �uc, as was stated previously.
This means that, for a very small increase of �ue, the param-
eter a0 becomes higher then amin, that is between amin and
amax. The relationship between �ue and a0, determined ac-
cording to Eq.�41�, is shown in Fig. 7. The figure was carried
out for uc=0 �4,5�. One can see that a0 is an increasing
function with respect to �ue for all accepted values of the
parameters k and K. It might be interested to point out that
the increase is the sharpest for the smallest k �line d�. There-
fore, very small increase of �ue ensures a0 to be in an ex-
pected interval, that is between amin and amax.

A patient reader may ask how a0 depends on �uc. The
parameter a0 is the decreasing function on �uc. According to
Eq. �41�, we can study how a0 depends on both �ue and �uc.
For example, one can check that, for �ue=900 m/s and

TABLE III. The optimal values of the Morse parameter a ob-
tained from the requirement D0�a0�=�0�a0�.

Triplet K �N/m� K �N/m� D �eV� a0 �Å−1�

1 0.3 0.15 0.468

2 1 0.3 0.10 0.573

1 0.3 0.05 0.810

3 0.5 0.15 0.473

4 3 0.5 0.10 0.579

3 0.5 0.05 0.819

6 0.5 0.15 0.532

6 6 0.5 0.10 0.652

6 0.5 0.05 0.922

24 0.5 0.15 0.712

10 24 0.5 0.10 0.872

24 0.5 0.05 1.233

FIG. 7. Velocity �ue as a func-
tion of the inverse width �a: k
=24 N/m, K=0.5 N/m, b: k
=6 N/m, K=0.5 N/m, c: k
=3 N/m, K=0.5 N/m, d: k
=1 N/m, K=0.3 N/m�.

SINGLE-MOLECULE UNZIPPERING EXPERIMENTS ON¼ PHYSICAL REVIEW E 73, 021905 �2006�

021905-9



�uc=0.4�ue, the values of a0 for D=0.1 eV are 0.699 Å−1,
0.686 Å−1, 0.756 Å−1, and 0.973 Å−1 for triplets 2, 4, 6, and
10, respectively.

The previously mentioned value for g, that is g=0.27,
comes from D0�g�=�0�g�.

V. CONCLUDING REMARKS

The main aim of this paper was to study the highest pos-
sible values of the parameters a and D, existing in the PBD
model. This was determined according to the experimental
data. We wanted to show that the commonly used values of
those parameters have been overestimated. Our statement
about amax was corroborated with the simple theoretical cal-
culations. Also, the smallest possible values were calculated
according to the requirement Q�a��0. Hence, we suggested
an interval for a with rather precise lower limit and the esti-
mated, according to the experimental data, upper limit.

In addition, we gave an argument that the most favorable,
that is biologically the best, mode might be the one when the
phase velocities of the envelope and the carrier wave are
equal. This corresponds to the requirement �41� and we

called this as the coherent mode. We showed that the values
of the parameter a, corresponding to the coherent mode, may
be in the above mentioned interval for reasonable values of
still arbitrary parameters �ue and �uc.

Finally, we want to express an idea how to determine the
possible values for the parameters �ue and �uc. Namely, the
requirement that a be between amin and amax might bring
about the accepted interval for the parameters �ue and �uc.
However, this requires a further research and is not a topic of
this paper.

In this paper, the effects of viscous environment are dis-
regarded since in Ref. �9� one approximative approach was
already introduced. Nevertheless, more precise derivations of
DNA dynamics in the presence of viscosity have been car-
ried out and will be submitted soon.
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